Characterization of the Lytic Capability of a LysK-Like Endolysin, Lys-phiSA012, Derived from a Polyvalent Staphylococcus aureus Bacteriophage
نویسندگان
چکیده
Antibiotic-resistant bacteria (ARB) have spread widely and rapidly, with their increased occurrence corresponding with the increased use of antibiotics. Infections caused by Staphylococcus aureus have a considerable negative impact on human and livestock health. Bacteriophages and their peptidoglycan hydrolytic enzymes (endolysins) have received significant attention as novel approaches against ARB, including S. aureus. In the present study, we purified an endolysin, Lys-phiSA012, which harbors a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain, an amidase domain, and a SH3b cell wall binding domain, derived from a polyvalent S. aureus bacteriophage which we reported previously. We demonstrate that Lys-phiSA012 exhibits high lytic activity towards staphylococcal strains, including methicillin-resistant S. aureus (MRSA). Analysis of deletion mutants showed that only mutants possessing the CHAP and SH3b domains could lyse S. aureus, indicating that lytic activity of the CHAP domain depended on the SH3b domain. The presence of at least 1 mM Ca2+ and 100 µM Zn2+ enhanced the lytic activity of Lys-phiSA012 in a turbidity reduction assay. Furthermore, a minimum inhibitory concentration (MIC) assay showed that the addition of Lys-phiSA012 decreased the MIC of oxacillin. Our results suggest that endolysins are a promising approach for replacing current antimicrobial agents and may contribute to the proper use of antibiotics, leading to the reduction of ARB.
منابع مشابه
The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA.
LysK is the endolysin from the staphylococcal bacteriophage K, and can digest the cell wall of many staphylococci. Lysostaphin is a bacteriocin secreted by Staphylococcus simulans to kill Staphylococcus aureus. Both LysK and lysostaphin have been shown to lyse methicillin-resistant S. aureus (MRSA). This study describes optimal reaction conditions for the recombinant His-tagged LysK protein (pH...
متن کاملIsolation, characterization and therapeutic potential assessment of bacteriophages virulent to Staphylococcus aureus associated with goat mastitis
In the present study, the therapeutic potential of bacteriophages virulent to Staphylococcus aureus associated with goat mastitis were isolated, identified and assessed. Staphylococcus aureus (host or indicator bacterium) was isolated from a goat suffering from clinical mastitis. Based on cultural, morphological, biochemical tests and amplification of S. aureus specific thermonuclease gene inPC...
متن کاملA Novel Chimeric Endolysin with Antibacterial Activity against Methicillin-Resistant Staphylococcus aureus
Cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) and amidase are known as catalytic domains of the bacteriophage-derived endolysin LysK and were previously reported to show lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). In the current study, the in silico design and analysis of chimeric CHAP-amidase model was applied to enhance the stability and solubilit...
متن کاملLysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin.
The Staphylococcus aureus bacteriophage phi11 endolysin has two peptidoglycan hydrolase domains (endopeptidase and amidase) and an SH3b cell wall-binding domain. In turbidity reduction assays, the purified protein can lyse untreated staphylococcal mastitis pathogens, Staphylococcus aureus and coagulase-negative staphylococci (Staphylococcus chronogenes, Staphylococcus epidermidis, Staphylococcu...
متن کاملPhage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci.
A truncated derivative of the phage endolysin LysK containing only the CHAP (cysteine- and histidine-dependent amidohydrolase/peptidase) domain exhibited lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus. This is the first known report of a truncated phage lysin which retains high lytic activity against live staphylococcal cells.
متن کامل